Uniform coverings of 2-paths in the complete bipartite directed graph

Midori Kobayashi ${ }^{1}$, Keiko Kotani ${ }^{2}$, Nobuaki Mutoh ${ }^{1}$ and Gisaku Nakamura ${ }^{1}$
${ }^{1}$ University of Shizuoka, Shizuoka 422-8526 Japan
${ }^{2}$ Tokyo University of Science, Tokyo, 162-8601 Japan

Abstract

Let G be a directed graph and H a subgraph of G. A $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every directed 2-path in G lies in exactly λ subgraphs in \mathcal{D}. In this paper, we show that there exists a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design for every $n \geq 2$, where $K_{n, n}^{*}$ is the complete bipartite directed graph and $\vec{C}_{2 n}$ is a directed Hamilton cycle in $K_{n, n}^{*}$.

1 Introduction

Consider a graph G and a subgraph H of G. A $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every 2-path (path of length 2) lies in exactly λ subgraphs in \mathcal{D}. Analogously, when G is a directed graph (digraph) and H is a subgraph of G (a subgraph of a directed graph means a directed subgraph), a $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every directed 2-path lies in exactly λ subgraphs in $\mathcal{D} .{ }^{1}$ We call these designs Dudeney designs.

The following notation will be used. K_{n} is the complete graph on n vertices, $K_{n, n}$ is the complete bipartite graph on partite sets with n vertices each, C_{k} is a cycle on k vertices, and P_{k} is a path on k vertices. K_{n}^{*} is the complete digraph on n vertices and $K_{n, n}^{*}$ is the complete bipartite digraph on partite sets with n vertices each. K_{n}^{*} and $K_{n, n}^{*}$ are digraphs which are obtained from K_{n} and $K_{n, n}$, respectively, by substituting oppositely directed edges for each edge. \vec{C}_{k} is a directed cycle on k vertices and \vec{P}_{k} is a directed path on k vertices.

We restrict our attention to $D(G, H, \lambda)$ designs in which G is $K_{n}, K_{n, n}, K_{n}^{*}$ or $K_{n, n}^{*}$, and H is a Hamilton cycle or a Hamilton path. (In the case of k-cycles and k-paths, see [5].) A $D\left(K_{n}, C_{n}, 1\right)$ design is a solution of the famous Dudeney's round table problem which asks for a seating of n people at a round table on consecutive days so that each person sat between every pair of other people exactly once [3].

The following theorems are known.
Theorem A [2, 4] Let $n \geq 3$ be an integer.
(1) There exists a $D\left(K_{n}, C_{n}, 1\right)$ design when n is even.
(2) There exists a $D\left(K_{n}, C_{n}, 2\right)$ design when n is odd.

[^0]Theorem B [5] Let $n \geq 3$ be an integer.
(1) There exists a $D\left(K_{n}, P_{n}, 1\right)$ design when $n \equiv 0,1,3(\bmod 4)$.
(2) There exists a $D\left(K_{n}, P_{n}, 2\right)$ design when $n \equiv 2(\bmod 4)$.

Theorem C [5] Let $n \geq 2$ be an integer.
(1) There exists a $D\left(K_{n, n}, C_{2 n}, 1\right)$ design when $n \equiv 0,1,3(\bmod 4)$.
(2) There exists a $D\left(K_{n, n}, C_{2 n}, 2\right)$ design when $n \equiv 2(\bmod 4)$.

For the complete digraph K_{n}^{*} and the complete bipartite digraph $K_{n, n}^{*}$, we obtain the following corollaries immediately from the above theorems.

Corollary \mathbf{A}^{\prime} Let $n \geq 3$ be an integer.
(1) There exists a $D\left(K_{n}^{*}, \vec{C}_{n}, 1\right)$ design when n is even.
(2) There exists a $D\left(K_{n}^{*}, \vec{C}_{n}, 2\right)$ design when n is odd.

Corollary \mathbf{B}^{\prime} Let $n \geq 3$ be an integer.
(1) There exists a $D\left(K_{n}^{*}, \vec{P}_{n}, 1\right)$ design when $n \equiv 0,1,3(\bmod 4)$.
(2) There exists a $D\left(K_{n}^{*}, \vec{P}_{n}, 2\right)$ design when $n \equiv 2(\bmod 4)$.

Corollary \mathbf{C}^{\prime} Let $n \geq 2$ be an integer.
(1) There exists a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design when $n \equiv 0,1,3(\bmod 4)$.
(2) There exists a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 2\right)$ design when $n \equiv 2(\bmod 4)$.

We note that the $D\left(K_{n}, C_{n}, 2\right)$ design (n is odd) constructed in [4] does not induce a $D\left(K_{n}^{*}, \vec{C}_{n}, 1\right)$ design, and the $D\left(K_{n}, P_{n}, 2\right)$ design and the $D\left(K_{n, n}, C_{2 n}, 2\right)$ design $(n \equiv 2(\bmod 4))$ constructed in [5] does not induce a $D\left(K_{n}^{*}, \vec{P}_{n}, 1\right)$ design and a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design, respectively.

In this paper, we obtain the following theorem.
Theorem 1.1 There exists a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design for every $n \geq 2$.
The method of the proof is similar to the method used in [5]. For two sequences $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $Y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ of length n, define a sequence $X \times Y$ of length $2 n$ as

$$
X \times Y=\left(x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}\right)
$$

Define $s^{j} Y(0 \leq j \leq n-1)$ as

$$
s^{j} Y=\left(y_{n-j+1}, y_{n-j+2}, \ldots, y_{n-j}\right)
$$

where the subscripts of the y_{i} are calculated modulo n. Then we have

$$
X \times s^{j} Y=\left(x_{1}, y_{n-j+1}, x_{2}, y_{n-j+2}, x_{3}, y_{n-j+3}, \ldots, x_{n}, y_{n-j}\right)
$$

2 Proof of Theorem 1.1

A Hamilton decomposition \mathcal{H} of a digraph is a set of Hamilton cycles such that every directed edge (arc) of the digraph appears in \mathcal{H} exactly once. Note that a Hamilton cycle in a digraph means a directed Hamilton cycle.

Proposition 2.1 Let $n \geq 3$ be an integer. If there exists a Hamilton decomposition of K_{n}^{*}, then there exists a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design.

Proof. Let $V=V_{1} \cup V_{2}$ be the vertex set of $K_{n, n}^{*}$, where V_{1} and V_{2} are the partite sets with $\left|V_{1}\right|=\left|V_{2}\right|=n$. Let $K_{V_{1}}^{*}$ and $K_{V_{2}}^{*}$ be the complete digraphs on the vertex sets V_{1} and V_{2}, respectively.

Let $\mathcal{H}=\left\{H_{i} \mid 1 \leq i \leq n-1\right\}$ and $\mathcal{G}=\left\{G_{i} \mid 1 \leq i \leq n-1\right\}$ be Hamilton decompositions of $K_{V_{1}}^{*}$ and $K_{V_{2}}^{*}$, respectively. Put $H_{i}=\left(a_{1 i}, a_{2 i}, \ldots, a_{n i}\right)$ and $G_{i}=$ $\left(b_{1 i}, b_{2 i}, \ldots, b_{n i}\right)$, where $a_{1 i}, a_{2 i}, \ldots, a_{n i} \in V_{1}, b_{1 i}, b_{2 i}, \ldots, b_{n i} \in V_{2}(1 \leq i \leq n-1)$. Consider $H_{i}=\left(a_{1 i}, a_{2 i}, \ldots, a_{n i}\right)$ and $G_{i}=\left(b_{1 i}, b_{2 i}, \ldots, b_{n i}\right)$ as sequences of vertices and put

$$
\mathcal{D}_{1}=\left\{H_{i} \times s^{j} G_{i} \mid 0 \leq j \leq n-1,1 \leq i \leq n-1\right\}
$$

Consider $H_{i} \times s^{j} G_{i}$ as a Hamilton cycle in $K_{n, n}^{*}$. There are many representations of a Hamilton cycle, for example, $H_{i}=\left(a_{2 i}, a_{3 i}, \ldots, a_{n i}, a_{1 i}\right)$ or $H_{i}=\left(a_{3 i}, a_{4 i}, \ldots, a_{1 i}, a_{2 i}\right)$, etc, but \mathcal{D}_{1} is uniquely determined.

We will show that any directed 2-path in $K_{n, n}^{*}$ lies in exactly one cycle of \mathcal{D}_{1}.
For a directed 2-path (x, y, z) with $x, z \in V_{1}, y \in V_{2}$, there is a Hamilton cycle H_{t} such that a directed edge (x, z) belongs to $H_{t}(1 \leq t \leq n-1)$. Since y is one of the vertices in G_{t}, the directed 2-path (x, y, z) lies in a Hamilton cycle $H_{t} \times s^{j} G_{t}$ for some $j(0 \leq j \leq n-1)$.

For a directed 2-path (x, y, z) with $x, z \in V_{2}, y \in V_{1}$, there is a Hamilton cycle G_{s} such that a directed edge (x, z) belongs to $G_{s}(1 \leq s \leq n-1)$. Since y is one of the vertices in H_{s}, the directed 2-path (x, y, z) lies in a Hamilton cycle $H_{s} \times s^{k} G_{s}$ for some $k(0 \leq k \leq n-1)$. Thus any 2-path in $K_{n, n}^{*}$ lies in a cycle of \mathcal{D}_{1}.

The number of directed 2-paths in $K_{n, n}^{*}$ is $2 n^{2}(n-1)$, and the number of directed 2-paths in a Hamilton cycle in $K_{n, n}^{*}$ is $2 n$. Since the cardinality of \mathcal{D}_{1} is $n(n-1)$, any directed 2 -path in $K_{n, n}^{*}$ lies in exactly one cycle in \mathcal{D}_{1}.

Therefore \mathcal{D}_{1} is $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design, which completes the proof.
When $n \geq 8$, there is a Hamilton decomposition of the complete digraph K_{n}^{*} [6]. When $n=3,5,7$, there is a Hamilton decomposition of K_{n}^{*} since there is a Hamilton decomposition of K_{n}. Therefore when $n=3,5$ and $n \geq 7$, there is a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design from Prop. 2.1. When $n=2$, it is trivial that there is a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design. When $n=4$, there is a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design from Cor. C^{\prime}. When $n=6$, there
is a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design as we found a $D\left(K_{n, n}, C_{2 n}, 1\right) \operatorname{design}^{2}$ with the aid of a computer. Thus there is a $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ design for every $n \geq 2$.

This completes the proof of Theorem 1.1.

3 Open problems

The existence problem of $D\left(K_{n, n}^{*}, \vec{C}_{2 n}, 1\right)$ designs was solved in this paper. For $D(G, H, \lambda)$ designs in which G is $K_{n}, K_{n, n}, K_{n}^{*}$ or $K_{n, n}^{*}$, and H is a Hamilton cycle or a Hamilton path, the remaining problems are whether the following designs exist:

1. $D\left(K_{n}, C_{n}, 1\right)$ designs for odd n,
2. $D\left(K_{n}, P_{n}, 1\right)$ designs for n with $n \equiv 2(\bmod 4)$,
3. $D\left(K_{n, n}, C_{2 n}, 1\right)$ designs for n with $n \equiv 2(\bmod 4)$,
4. $D\left(K_{n, n}, P_{2 n}, \lambda\right)$ designs for n and λ,
5. $D\left(K_{n}^{*}, \vec{C}_{n}, 1\right)$ designs for odd n,
6. $D\left(K_{n}^{*}, \vec{P}_{n}, 1\right)$ designs for n with $n \equiv 2(\bmod 4)$,
7. $D\left(K_{n, n}^{*}, \widehat{P}_{2 n}, \lambda\right)$ designs for n and λ.

If the designs 1 exist, then the designs 2,3 and 5 exist 3 and if the designs 2 exist, then the designs 6 exist. In this sense, a $D\left(K_{n}, C_{n}, 1\right)$ design, i.e., a solution of Dudeney's round table problem, would be important among them.

References

[1] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000) 100-121.
[2] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combin. Theory (A) 63 (1993) 26-42.
[3] M. Kobayashi, B. D. McKay, N. Mutoh and G. Nakamura, Black 1-factors and Dudeney sets, J. Combin. Math. Combin. Comput. 75 (2010) 167-174.
[4] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, Double coverings of 2-paths by Hamilton cycles, J. Combin. Designs 10 (2002) 195-206.

[^1][5] M. Kobayashi and G. Nakamura, Uniform coverings of 2-paths in the complete graph and the complete bipartite graph, J. Combin. Math. Combin. Comput., to appear. http://ai.u-shizuoka-ken.ac.jp/ ${ }^{\sim}$ midori/uniformcover-revised.pdf
[6] T. W. Tillson, A hamiltonian decomposition of $K_{2 m}^{*}, 2 m \geq 8$, J. Combin. Theory (B) 29 (1980) 68-74.

[^0]: ${ }^{1}$ For more general definition, see [1].

[^1]: ${ }^{2}\left\{\left(0,0^{\prime}, 1,1^{\prime}, 2,2^{\prime}, 3,3^{\prime}, 4,4^{\prime}, 5,5^{\prime}\right),\left(0,0^{\prime}, 2,1^{\prime}, 3,2^{\prime}, 1,3^{\prime}, 5,5^{\prime}, 4,4^{\prime}\right),\left(0,0^{\prime}, 3,1^{\prime}, 1,2^{\prime}, 4,5^{\prime}, 2,4^{\prime}, 5,3^{\prime}\right)\right.$, $\left(0,0^{\prime}, 4,1^{\prime}, 1,3^{\prime}, 2,4^{\prime}, 3,5^{\prime}, 5,2^{\prime}\right),\left(0,0^{\prime}, 5,2^{\prime}, 1,5^{\prime}, 2,3^{\prime}, 3,4^{\prime}, 4,1^{\prime}\right),\left(0,1^{\prime}, 1,4^{\prime}, 4,2^{\prime}, 2,3^{\prime}, 5,0^{\prime}, 3,5^{\prime}\right),\left(0,1^{\prime}\right.$, $\left.2,3^{\prime}, 4,5^{\prime}, 1,0^{\prime}, 5,4^{\prime}, 3,2^{\prime}\right)$, ($\left.0,1^{\prime}, 3,5^{\prime}, 2,0^{\prime}, 1,3^{\prime}, 4,2^{\prime}, 5,4^{\prime}\right),\left(0,1^{\prime}, 5,4^{\prime}, 1,5^{\prime}, 3,2^{\prime}, 4,0^{\prime}, 2,3^{\prime}\right),\left(0,2^{\prime}, 1,4^{\prime}\right.$, $\left.2,1^{\prime}, 5,0^{\prime}, 4,5^{\prime}, 3,3^{\prime}\right),\left(0,2^{\prime}, 2,4^{\prime}, 4,0^{\prime}, 3,3^{\prime}, 5,1^{\prime}, 1,5^{\prime}\right),\left(0,2^{\prime}, 4,1^{\prime}, 3,3^{\prime}, 1,5^{\prime}, 5,0^{\prime}, 2,4^{\prime}\right),\left(0,3^{\prime}, 1,4^{\prime}, 3,0^{\prime}\right.$, $\left.\left.2,2^{\prime}, 5,1^{\prime}, 4,5^{\prime}\right),\left(0,3^{\prime}, 4,0^{\prime}, 1,2^{\prime}, 2,5^{\prime}, 5,1^{\prime}, 3,4^{\prime}\right),\left(0,4^{\prime}, 1,0^{\prime}, 3,2^{\prime}, 5,3^{\prime}, 4,1^{\prime}, 2,5^{\prime}\right)\right\}$, where $\{0,1,2,3,4,5\}$ $\cup\left\{0^{\prime}, 1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}\right\}$ is the vertex set of $K_{n, n}$.
 ${ }^{3}$ The designs 1 induce the designs 2 by deleting a vertex. For the fact that the designs 1 induce the designs 3, see Prop. 5.1 in [5].

