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Abstract Let G be a directed graph and H a subgraph of G. A D(G, H, \)
design is a multiset D of subgraphs of G each isomorphic to H so that every
directed 2-path in G lies in exactly A subgraphs in D. In this paper, we show
that there exists a D(K, ,, ﬁgn, 1) design for every n > 2, where K7, is
the complete bipartite directed graph and ﬁgn is a directed Hamilton cycle
in Ky, .

1 Introduction

Consider a graph G and a subgraph H of G. A D(G,H,\) design is a multiset D
of subgraphs of G each isomorphic to H so that every 2-path (path of length 2) lies
in exactly A subgraphs in D. Analogously, when G is a directed graph (digraph) and
H is a subgraph of G (a subgraph of a directed graph means a directed subgraph),
a D(G,H,\) design is a multiset D of subgraphs of G each isomorphic to H so that
every directed 2-path lies in exactly A subgraphs in D.!  We call these designs Dudeney
designs.

The following notation will be used. K, is the complete graph on n vertices, K, ,
is the complete bipartite graph on partite sets with n vertices each, C} is a cycle on k
vertices, and Py is a path on k vertices. K is the complete digraph on n vertices and
K7, , 1s the complete bipartite digraph on partite sets with n vertices each. K and
K;*m are digraphs which are obtained from K, and K, ,, respectively, by substituting
oppositely directed edges for each edge. ﬁk is a directed cycle on k vertices and ?k is
a directed path on k vertices.

We restrict our attention to D(G, H, \) designs in which G is Ky, Ky n, K, or K,
and H is a Hamilton cycle or a Hamilton path. (In the case of k-cycles and k-paths, see
[5].) A D(Kp,Cp,1) design is a solution of the famous Dudeney’s round table problem
which asks for a seating of n people at a round table on consecutive days so that each
person sat between every pair of other people exactly once [3].

The following theorems are known.

Theorem A [2, 4] Let n > 3 be an integer.
(1) There exists a D(K,,Cy, 1) design when n is even.
(2) There exists a D(K,,Cy,2) design when n is odd.

! For more general definition, see [1].




Theorem B [5] Let n > 3 be an integer.
(1) There exists a D(K,, P,,1) design when n =0,1,3 (mod 4).
(2) There exists a D(Ky, Pp,2) design when n =2 (mod 4).

Theorem C [5] Let n > 2 be an integer.
(1) There exists a D(Kpn, Copn,1) design when n =0,1,3 (mod 4).
(2) There exists a D(Kp p, Cop,2) design when n =2 (mod 4).

For the complete digraph K and the complete bipartite digraph K ,, we obtain

the following corollaries immediately from the above theorems.

o

Corollary A’ Let n > 3 be an integer.
(1) There exists a D(K}, Cp,1) design when n is even.
(2) There exists a D(K};, C'y,,2) design when n is odd.

Corollary B’ Let n > 3 be an integer.
(1) There exists a D(K}, ﬁn, 1) design when n=0,1,3 (mod 4).
(2) There exists a D(K}, ﬁn, 2) design when n =2 (mod 4).

Corollary C' Let n > 2 be an integer.
(1) There exists a D(K ﬁgn, 1) design when n =10,1,3 (mod 4).

n,n’

(2) There exists a D(K; 827% 2) design when n =2 (mod 4).

n,n’
We note that the D(K,, Cy,2) design (n is odd) constructed in [4] does not induce
a D(K;;,ﬁn,l) design, and the D(K,, P,,2) design and the D(K, ,,Cay,2) design
(n = 2 (mod 4)) constructed in [5] does not induce a D(K;;,ﬁn,l) design and a
D(K} on, 1) design, respectively.

n,n’
In this paper, we obtain the following theorem.

Theorem 1.1 There exists a D(K ﬁgn, 1) design for every n > 2.

n,n?

The method of the proof is similar to the method used in [5]. For two sequences
X = (z1,22,...,2y) and Y = (y1,¥2,...,yn) of length n, define a sequence X x Y of
length 2n as
X XY =(21,Y1,%2,Y25 - -+, Ty Yn )

Define s’Y (0 <j<n—1) as

SJY = (yn—j+17 Yn—j+2,- - - 7y7l_j)7

where the subscripts of the y; are calculated modulo n. Then we have

X xsY = (:Clvyn*j+17x27yn7j+25$37yn*j+37 <oy Tn, ynfj)



2 Proof of Theorem 1.1

A Hamilton decomposition H of a digraph is a set of Hamilton cycles such that every
directed edge (arc) of the digraph appears in H exactly once. Note that a Hamilton
cycle in a digraph means a directed Hamilton cycle.

Proposition 2.1 Let n > 3 be an integer. If there exists a Hamilton decomposition of
K, then there exists a D(K}, ﬁgn, 1) design.

n,n’

Proof. Let V = V7 UV, be the vertex set of K;;n, where V7 and V5 are the partite sets
with [V1| = [V2| = n. Let K7, and K7, be the complete digraphs on the vertex sets V1
and Vb, respectively.

Let H={H; |1 <i<n-1}and G = {G; | 1 < i < n — 1} be Hamilton

decompositions of Ki. and K7, , respectively. Put H; = (a1;,ag;,-..,an;) and G; =
(blia bgi, ceey bm'), where A15,0A2,...,0n; € Vl, bh;, bQi, ceey bni € Vo (1 <1< n-— 1).
Consider H; = (a1;,a2i, - .., an;) and G; = (b14, ba;, . . ., bni) as sequences of vertices and
put

Dy ={H; xs’G; |0<j<n—1,1<i<n—1}

Consider H; x s'G; as a Hamilton cycle in K3, - There are many representations of a
Hamilton cycle, for example, H; = (ag;, as;, ..., ani,a1;) or H; = (as;, aqs, ..., a1i,a2i),
etc, but Dy is uniquely determined.

We will show that any directed 2-path in Ky, lies in exactly one cycle of D;.

For a directed 2-path (z,y,2) with =,z € Vi,y € V3, there is a Hamilton cycle H;
such that a directed edge (x,z) belongs to H; (1 <t < n —1). Since y is one of the
vertices in Gy, the directed 2-path (z,v, 2) lies in a Hamilton cycle H; x s/G; for some
jO<j<n-1).

For a directed 2-path (z,y,2z) with z,z € Va,y € V}, there is a Hamilton cycle G
such that a directed edge (x, z) belongs to G5 (1 < s < n — 1). Since y is one of the
vertices in H,, the directed 2-path (z,y, 2) lies in a Hamilton cycle Hg x skG, for some
k (0 <k <n—1). Thus any 2-path in K , lies in a cycle of D.

The number of directed 2-paths in K, is 2n%(n — 1), and the number of directed
2-paths in a Hamilton cycle in K, , is 2n. Since the cardinality of Dy is n(n — 1), any
directed 2-path in K7 , lies in exactly one cycle in D;.

Therefore Dy is D(K, ,,, ﬁgn, 1) design, which completes the proof. O

When n > 8, there is a Hamilton decomposition of the complete digraph K [6].
When n = 3,5,7, there is a Hamilton decomposition of K since there is a Hamilton
decomposition of K,,. Therefore when n = 3,5 and n > 7, there is a D(K}; ﬁQn, 1)

n,n’
design from Prop. 2.1. When n = 2, it is trivial that there is a D(Kj, ,, ﬁgn, 1) design.
When n = 4, there is a D(K,*m,ﬁgn, 1) design from Cor. C’. When n = 6, there



is a D(K} ﬁgn, ) design as we found a D(K,,,Can, 1) design? with the aid of a

n,n?
computer. Thus there is a D(K}, ,,, 8271, ) design for every n > 2.
This completes the proof of Theorem 1.1.

3 Open problems

The existence problem of D(K, ,,, ﬁgn, 1) designs was solved in this paper. For D(G, H, \)
designs in which G is K,,, Ky, ,, K} or K} ., and H is a Hamilton cycle or a Hamilton

n,n?
path, the remaining problems are whether the following designs exist:

1. D(K,,C,, 1) designs for odd n,

2. D(K,, P,,1) designs for n with n = 2 (mod 4),

3. D(Ky pn,Cap, 1) designs for n with n =2 (mod 4),
4. D(Knn, Py, \) designs for n and A,

5. D(K} , 1) designs for odd n,

6. D(K} 1) designs for n with n = 2 (mod 4),
7. D(K;“m, %gn, A) designs for n and .

If the designs 1 exist, then the designs 2, 3 and 5 exist® and if the designs 2
exist, then the designs 6 exist. In this sense, a D(K,,C),1) design, i.e., a solution of
Dudeney’s round table problem, would be important among them.
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