Uniform coverings of 2-paths in the complete bipartite directed graph

Midori Kobayashi¹, Keiko Kotani², Nobuaki Mutoh¹ and Gisaku Nakamura¹

¹University of Shizuoka, Shizuoka 422-8526 Japan ²Tokyo University of Science, Tokyo, 162-8601 Japan

Abstract Let G be a directed graph and H a subgraph of G. A $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every directed 2-path in G lies in exactly λ subgraphs in \mathcal{D} . In this paper, we show that there exists a $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ design for every $n \geq 2$, where $K_{n,n}^*$ is the complete bipartite directed graph and \overrightarrow{C}_{2n} is a directed Hamilton cycle in $K_{n,n}^*$.

1 Introduction

Consider a graph G and a subgraph H of G. A $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every 2-path (path of length 2) lies in exactly λ subgraphs in \mathcal{D} . Analogously, when G is a directed graph (digraph) and H is a subgraph of G (a subgraph of a directed graph means a directed subgraph), a $D(G, H, \lambda)$ design is a multiset \mathcal{D} of subgraphs of G each isomorphic to H so that every directed 2-path lies in exactly λ subgraphs in \mathcal{D} .¹ We call these designs *Dudeney designs*.

The following notation will be used. K_n is the complete graph on n vertices, $K_{n,n}$ is the complete bipartite graph on partite sets with n vertices each, C_k is a cycle on k vertices, and P_k is a path on k vertices. K_n^* is the complete digraph on n vertices and $K_{n,n}^*$ is the complete bipartite digraph on partite sets with n vertices each. K_n^* and $K_{n,n}^*$ are digraphs which are obtained from K_n and $K_{n,n}$, respectively, by substituting oppositely directed edges for each edge. \overrightarrow{C}_k is a directed cycle on k vertices and \overrightarrow{P}_k is a directed path on k vertices.

We restrict our attention to $D(G, H, \lambda)$ designs in which G is $K_n, K_{n,n}, K_n^*$ or $K_{n,n}^*$, and H is a Hamilton cycle or a Hamilton path. (In the case of k-cycles and k-paths, see [5].) A $D(K_n, C_n, 1)$ design is a solution of the famous *Dudeney's round table problem* which asks for a seating of n people at a round table on consecutive days so that each person sat between every pair of other people exactly once [3].

The following theorems are known.

Theorem A [2, 4] Let $n \ge 3$ be an integer.

(1) There exists a $D(K_n, C_n, 1)$ design when n is even.

(2) There exists a $D(K_n, C_n, 2)$ design when n is odd.

¹ For more general definition, see [1].

Theorem B [5] Let $n \ge 3$ be an integer.

(1) There exists a $D(K_n, P_n, 1)$ design when $n \equiv 0, 1, 3 \pmod{4}$.

(2) There exists a $D(K_n, P_n, 2)$ design when $n \equiv 2 \pmod{4}$.

Theorem C [5] Let $n \ge 2$ be an integer.

(1) There exists a $D(K_{n,n}, C_{2n}, 1)$ design when $n \equiv 0, 1, 3 \pmod{4}$.

(2) There exists a $D(K_{n,n}, C_{2n}, 2)$ design when $n \equiv 2 \pmod{4}$.

For the complete digraph K_n^* and the complete bipartite digraph $K_{n,n}^*$, we obtain the following corollaries immediately from the above theorems.

Corollary A' Let $n \ge 3$ be an integer.

(1) There exists a $D(K_n^*, \vec{C}_n, 1)$ design when n is even. (2) There exists a $D(K_n^*, \vec{C}_n, 2)$ design when n is odd.

Corollary B' Let $n \ge 3$ be an integer.

(1) There exists a $D(K_n^*, \overrightarrow{P}_n, 1)$ design when $n \equiv 0, 1, 3 \pmod{4}$. (2) There exists a $D(K_n^*, \overrightarrow{P}_n, 2)$ design when $n \equiv 2 \pmod{4}$.

Corollary C' Let $n \ge 2$ be an integer.

(1) There exists a $D(K_{n,n}^*, \vec{C}_{2n}, 1)$ design when $n \equiv 0, 1, 3 \pmod{4}$.

(2) There exists a $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 2)$ design when $n \equiv 2 \pmod{4}$.

We note that the $D(K_n, C_n, 2)$ design (n is odd) constructed in [4] does not induce a $D(K_n^*, \overline{C}_n, 1)$ design, and the $D(K_n, P_n, 2)$ design and the $D(K_{n,n}, C_{2n}, 2)$ design $(n \equiv 2 \pmod{4})$ constructed in [5] does not induce a $D(K_n^*, \overrightarrow{P}_n, 1)$ design and a $D(K_{n.n}^*, \overline{C}_{2n}, 1)$ design, respectively.

In this paper, we obtain the following theorem.

Theorem 1.1 There exists a $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ design for every $n \geq 2$.

The method of the proof is similar to the method used in [5]. For two sequences $X = (x_1, x_2, \ldots, x_n)$ and $Y = (y_1, y_2, \ldots, y_n)$ of length n, define a sequence $X \times Y$ of length 2n as

 $X \times Y = (x_1, y_1, x_2, y_2, \dots, x_n, y_n).$

Define $s^j Y \ (0 \le j \le n-1)$ as

$$s^{j}Y = (y_{n-j+1}, y_{n-j+2}, \dots, y_{n-j}),$$

where the subscripts of the y_i are calculated modulo n. Then we have

$$X \times s^{j}Y = (x_{1}, y_{n-j+1}, x_{2}, y_{n-j+2}, x_{3}, y_{n-j+3}, \dots, x_{n}, y_{n-j}).$$

2 Proof of Theorem 1.1

A Hamilton decomposition \mathcal{H} of a digraph is a set of Hamilton cycles such that every directed edge (arc) of the digraph appears in \mathcal{H} exactly once. Note that a Hamilton cycle in a digraph means a directed Hamilton cycle.

Proposition 2.1 Let $n \ge 3$ be an integer. If there exists a Hamilton decomposition of K_n^* , then there exists a $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ design.

Proof. Let $V = V_1 \cup V_2$ be the vertex set of $K_{n,n}^*$, where V_1 and V_2 are the partite sets with $|V_1| = |V_2| = n$. Let $K_{V_1}^*$ and $K_{V_2}^*$ be the complete digraphs on the vertex sets V_1 and V_2 , respectively.

Let $\mathcal{H} = \{H_i \mid 1 \leq i \leq n-1\}$ and $\mathcal{G} = \{G_i \mid 1 \leq i \leq n-1\}$ be Hamilton decompositions of $K_{V_1}^*$ and $K_{V_2}^*$, respectively. Put $H_i = (a_{1i}, a_{2i}, \ldots, a_{ni})$ and $G_i = (b_{1i}, b_{2i}, \ldots, b_{ni})$, where $a_{1i}, a_{2i}, \ldots, a_{ni} \in V_1, b_{1i}, b_{2i}, \ldots, b_{ni} \in V_2$ $(1 \leq i \leq n-1)$. Consider $H_i = (a_{1i}, a_{2i}, \ldots, a_{ni})$ and $G_i = (b_{1i}, b_{2i}, \ldots, b_{ni})$ as sequences of vertices and put

$$\mathcal{D}_1 = \{ H_i \times s^j G_i \mid 0 \le j \le n - 1, 1 \le i \le n - 1 \}.$$

Consider $H_i \times s^j G_i$ as a Hamilton cycle in $K_{n,n}^*$. There are many representations of a Hamilton cycle, for example, $H_i = (a_{2i}, a_{3i}, \ldots, a_{ni}, a_{1i})$ or $H_i = (a_{3i}, a_{4i}, \ldots, a_{1i}, a_{2i})$, etc, but \mathcal{D}_1 is uniquely determined.

We will show that any directed 2-path in $K_{n,n}^*$ lies in exactly one cycle of \mathcal{D}_1 .

For a directed 2-path (x, y, z) with $x, z \in V_1, y \in V_2$, there is a Hamilton cycle H_t such that a directed edge (x, z) belongs to H_t $(1 \le t \le n - 1)$. Since y is one of the vertices in G_t , the directed 2-path (x, y, z) lies in a Hamilton cycle $H_t \times s^j G_t$ for some j $(0 \le j \le n - 1)$.

For a directed 2-path (x, y, z) with $x, z \in V_2, y \in V_1$, there is a Hamilton cycle G_s such that a directed edge (x, z) belongs to G_s $(1 \leq s \leq n-1)$. Since y is one of the vertices in H_s , the directed 2-path (x, y, z) lies in a Hamilton cycle $H_s \times s^k G_s$ for some k $(0 \leq k \leq n-1)$. Thus any 2-path in $K_{n,n}^*$ lies in a cycle of \mathcal{D}_1 .

The number of directed 2-paths in $K_{n,n}^*$ is $2n^2(n-1)$, and the number of directed 2-paths in a Hamilton cycle in $K_{n,n}^*$ is 2n. Since the cardinality of \mathcal{D}_1 is n(n-1), any directed 2-path in $K_{n,n}^*$ lies in exactly one cycle in \mathcal{D}_1 .

Therefore \mathcal{D}_1 is $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ design, which completes the proof. \Box

When $n \ge 8$, there is a Hamilton decomposition of the complete digraph K_n^* [6]. When n = 3, 5, 7, there is a Hamilton decomposition of K_n^* since there is a Hamilton decomposition of K_n . Therefore when n = 3, 5 and $n \ge 7$, there is a $D(K_{n,n}^*, \vec{C}_{2n}, 1)$ design from Prop. 2.1. When n = 2, it is trivial that there is a $D(K_{n,n}^*, \vec{C}_{2n}, 1)$ design. When n = 4, there is a $D(K_{n,n}^*, \vec{C}_{2n}, 1)$ design from Cor. C'. When n = 6, there is a $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ design as we found a $D(K_{n,n}, C_{2n}, 1)$ design² with the aid of a computer. Thus there is a $D(K_{n,n}^*, \vec{C}_{2n}, 1)$ design for every $n \geq 2$.

This completes the proof of Theorem 1.1.

3 **Open problems**

The existence problem of $D(K_{n,n}^*, \overrightarrow{C}_{2n}, 1)$ designs was solved in this paper. For $D(G, H, \lambda)$ designs in which G is K_n , $K_{n,n}$, K_n^* or $K_{n,n}^*$, and H is a Hamilton cycle or a Hamilton path, the remaining problems are whether the following designs exist:

- 1. $D(K_n, C_n, 1)$ designs for odd n,
- 2. $D(K_n, P_n, 1)$ designs for n with $n \equiv 2 \pmod{4}$,
- 3. $D(K_{n,n}, C_{2n}, 1)$ designs for n with $n \equiv 2 \pmod{4}$,
- 4. $D(K_{n,n}, P_{2n}, \lambda)$ designs for n and λ ,
- 5. $D(K_n^*, \overline{C}_n, 1)$ designs for odd n,
- 6. $D(K_n^*, \overrightarrow{P}_n, 1)$ designs for n with $n \equiv 2 \pmod{4}$, 7. $D(K_{n,n}^*, \overrightarrow{P}_{2n}, \lambda)$ designs for n and λ .

If the designs 1 exist, then the designs 2, 3 and 5 exist³ and if the designs 2 exist, then the designs 6 exist. In this sense, a $D(K_n, C_n, 1)$ design, i.e., a solution of Dudeney's round table problem, would be important among them.

References

- [1] K. Heinrich, D. Langdeau and H. Verrall, Covering 2-paths uniformly, J. Combin. Des. 8 (2000) 100-121.
- [2] M. Kobayashi, Kiyasu-Z. and G. Nakamura, A solution of Dudeney's round table problem for an even number of people, J. Combin. Theory (A) 63 (1993) 26–42.
- [3] M. Kobayashi, B. D. McKay, N. Mutoh and G. Nakamura, Black 1-factors and Dudeney sets, J. Combin. Math. Combin. Comput. 75 (2010) 167–174.
- [4] M. Kobayashi, N. Mutoh, Kiyasu-Z. and G. Nakamura, Double coverings of 2-paths by Hamilton cycles, J. Combin. Designs 10 (2002) 195–206.

 $^{^{2}}$ {(0,0', 1, 1', 2, 2', 3, 3', 4, 4', 5, 5'), (0, 0', 2, 1', 3, 2', 1, 3', 5, 5', 4, 4'), (0, 0', 3, 1', 1, 2', 4, 5', 2, 4', 5, 3'), 2, 3', 4, 5', 1, 0', 5, 4', 3, 2'), (0, 1', 3, 5', 2, 0', 1, 3', 4, 2', 5, 4'), (0, 1', 5, 4', 1, 5', 3, 2', 4, 0', 2, 3'), (0, 2', 1, 4', 1, 5', 3, 3'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3', 1, 5'), (0, 2', 1, 3'))2, 1', 5, 0', 4, 5', 3, 3'), (0, 2', 2, 4', 4, 0', 3, 3', 5, 1', 1, 5'), (0, 2', 4, 1', 3, 3', 1, 5', 5, 0', 2, 4'), (0, 3', 1, 4', 3, 0', 1, 5, 1, 2, 1,2, 2', 5, 1', 4, 5', (0, 3', 4, 0', 1, 2', 2, 5', 5, 1', 3, 4'), (0, 4', 1, 0', 3, 2', 5, 3', 4, 1', 2, 5'), where $\{0, 1, 2, 3, 4, 5\}$ $\cup \{0', 1', 2', 3', 4', 5'\}$ is the vertex set of $K_{n,n}$.

 $^{^{3}}$ The designs 1 induce the designs 2 by deleting a vertex. For the fact that the designs 1 induce the designs 3, see Prop. 5.1 in [5].

- [5] M. Kobayashi and G. Nakamura, Uniform coverings of 2-paths in the complete graph and the complete bipartite graph, J. Combin. Math. Combin. Comput., to appear. http://ai.u-shizuoka-ken.ac.jp/~midori/uniformcover-revised.pdf
- [6] T. W. Tillson, A hamiltonian decomposition of K_{2m}^* , $2m \ge 8$, J. Combin. Theory (B) **29** (1980) 68–74.