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Abstract Let G be a directed graph and H a subgraph of G. A D(G,H, λ)
design is a multiset D of subgraphs of G each isomorphic to H so that every
directed 2-path in G lies in exactly λ subgraphs in D. In this paper, we show
that there exists a D(K∗

n,n,
−→
C 2n, 1) design for every n ≥ 2, where K∗

n,n is

the complete bipartite directed graph and
−→
C 2n is a directed Hamilton cycle

in K∗
n,n.

1 Introduction

Consider a graph G and a subgraph H of G. A D(G,H, λ) design is a multiset D
of subgraphs of G each isomorphic to H so that every 2-path (path of length 2) lies
in exactly λ subgraphs in D. Analogously, when G is a directed graph (digraph) and
H is a subgraph of G (a subgraph of a directed graph means a directed subgraph),
a D(G,H, λ) design is a multiset D of subgraphs of G each isomorphic to H so that
every directed 2-path lies in exactly λ subgraphs in D.1 We call these designs Dudeney
designs.

The following notation will be used. Kn is the complete graph on n vertices, Kn,n

is the complete bipartite graph on partite sets with n vertices each, Ck is a cycle on k
vertices, and Pk is a path on k vertices. K∗

n is the complete digraph on n vertices and
K∗

n,n is the complete bipartite digraph on partite sets with n vertices each. K∗
n and

K∗
n,n are digraphs which are obtained from Kn and Kn,n, respectively, by substituting

oppositely directed edges for each edge.
−→
C k is a directed cycle on k vertices and

−→
P k is

a directed path on k vertices.
We restrict our attention to D(G,H, λ) designs in which G is Kn, Kn,n, K

∗
n or K∗

n,n,
and H is a Hamilton cycle or a Hamilton path. (In the case of k-cycles and k-paths, see
[5].) A D(Kn, Cn, 1) design is a solution of the famous Dudeney’s round table problem
which asks for a seating of n people at a round table on consecutive days so that each
person sat between every pair of other people exactly once [3].

The following theorems are known.

Theorem A [2, 4] Let n ≥ 3 be an integer.
(1) There exists a D(Kn, Cn, 1) design when n is even.
(2) There exists a D(Kn, Cn, 2) design when n is odd.

1 For more general definition, see [1].
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Theorem B [5] Let n ≥ 3 be an integer.
(1) There exists a D(Kn, Pn, 1) design when n ≡ 0, 1, 3 (mod 4).
(2) There exists a D(Kn, Pn, 2) design when n ≡ 2 (mod 4).

Theorem C [5] Let n ≥ 2 be an integer.
(1) There exists a D(Kn,n, C2n, 1) design when n ≡ 0, 1, 3 (mod 4).
(2) There exists a D(Kn,n, C2n, 2) design when n ≡ 2 (mod 4).

For the complete digraph K∗
n and the complete bipartite digraph K∗

n,n, we obtain
the following corollaries immediately from the above theorems.

Corollary A′ Let n ≥ 3 be an integer.
(1) There exists a D(K∗

n,
−→
C n, 1) design when n is even.

(2) There exists a D(K∗
n,
−→
C n, 2) design when n is odd.

Corollary B′ Let n ≥ 3 be an integer.
(1) There exists a D(K∗

n,
−→
P n, 1) design when n ≡ 0, 1, 3 (mod 4).

(2) There exists a D(K∗
n,
−→
P n, 2) design when n ≡ 2 (mod 4).

Corollary C′ Let n ≥ 2 be an integer.
(1) There exists a D(K∗

n,n,
−→
C 2n, 1) design when n ≡ 0, 1, 3 (mod 4).

(2) There exists a D(K∗
n,n,

−→
C 2n, 2) design when n ≡ 2 (mod 4).

We note that the D(Kn, Cn, 2) design (n is odd) constructed in [4] does not induce
a D(K∗

n,
−→
C n, 1) design, and the D(Kn, Pn, 2) design and the D(Kn,n, C2n, 2) design

(n ≡ 2 (mod 4)) constructed in [5] does not induce a D(K∗
n,
−→
P n, 1) design and a

D(K∗
n,n,

−→
C 2n, 1) design, respectively.

In this paper, we obtain the following theorem.

Theorem 1.1 There exists a D(K∗
n,n,

−→
C 2n, 1) design for every n ≥ 2.

The method of the proof is similar to the method used in [5]. For two sequences
X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) of length n, define a sequence X × Y of
length 2n as

X × Y = (x1, y1, x2, y2, . . . , xn, yn).

Define sjY (0 ≤ j ≤ n− 1) as

sjY = (yn−j+1, yn−j+2, . . . , yn−j),

where the subscripts of the yi are calculated modulo n. Then we have

X × sjY = (x1, yn−j+1, x2, yn−j+2, x3, yn−j+3, . . . , xn, yn−j).
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2 Proof of Theorem 1.1

A Hamilton decomposition H of a digraph is a set of Hamilton cycles such that every
directed edge (arc) of the digraph appears in H exactly once. Note that a Hamilton
cycle in a digraph means a directed Hamilton cycle.

Proposition 2.1 Let n ≥ 3 be an integer. If there exists a Hamilton decomposition of
K∗

n, then there exists a D(K∗
n,n,

−→
C 2n, 1) design.

Proof. Let V = V1 ∪ V2 be the vertex set of K∗
n,n, where V1 and V2 are the partite sets

with |V1| = |V2| = n. Let K∗
V1

and K∗
V2

be the complete digraphs on the vertex sets V1

and V2, respectively.
Let H = {Hi | 1 ≤ i ≤ n − 1} and G = {Gi | 1 ≤ i ≤ n − 1} be Hamilton

decompositions of K∗
V1

and K∗
V2
, respectively. Put Hi = (a1i, a2i, . . . , ani) and Gi =

(b1i, b2i, . . . , bni), where a1i, a2i, . . . , ani ∈ V1, b1i, b2i, . . . , bni ∈ V2 (1 ≤ i ≤ n − 1).
Consider Hi = (a1i, a2i, . . . , ani) and Gi = (b1i, b2i, . . . , bni) as sequences of vertices and
put

D1 = {Hi × sjGi | 0 ≤ j ≤ n− 1, 1 ≤ i ≤ n− 1}.

Consider Hi × sjGi as a Hamilton cycle in K∗
n,n. There are many representations of a

Hamilton cycle, for example, Hi = (a2i, a3i, . . . , ani, a1i) or Hi = (a3i, a4i, . . . , a1i, a2i),
etc, but D1 is uniquely determined.

We will show that any directed 2-path in K∗
n,n lies in exactly one cycle of D1.

For a directed 2-path (x, y, z) with x, z ∈ V1, y ∈ V2, there is a Hamilton cycle Ht

such that a directed edge (x, z) belongs to Ht (1 ≤ t ≤ n − 1). Since y is one of the
vertices in Gt, the directed 2-path (x, y, z) lies in a Hamilton cycle Ht × sjGt for some
j (0 ≤ j ≤ n− 1).

For a directed 2-path (x, y, z) with x, z ∈ V2, y ∈ V1, there is a Hamilton cycle Gs

such that a directed edge (x, z) belongs to Gs (1 ≤ s ≤ n − 1). Since y is one of the
vertices in Hs, the directed 2-path (x, y, z) lies in a Hamilton cycle Hs× skGs for some
k (0 ≤ k ≤ n− 1). Thus any 2-path in K∗

n,n lies in a cycle of D1.
The number of directed 2-paths in K∗

n,n is 2n2(n− 1), and the number of directed
2-paths in a Hamilton cycle in K∗

n,n is 2n. Since the cardinality of D1 is n(n− 1), any
directed 2-path in K∗

n,n lies in exactly one cycle in D1.

Therefore D1 is D(K∗
n,n,

−→
C 2n, 1) design, which completes the proof. 2

When n ≥ 8, there is a Hamilton decomposition of the complete digraph K∗
n [6].

When n = 3, 5, 7, there is a Hamilton decomposition of K∗
n since there is a Hamilton

decomposition of Kn. Therefore when n = 3, 5 and n ≥ 7, there is a D(K∗
n,n,

−→
C 2n, 1)

design from Prop. 2.1. When n = 2, it is trivial that there is a D(K∗
n,n,

−→
C 2n, 1) design.

When n = 4, there is a D(K∗
n,n,

−→
C 2n, 1) design from Cor. C′. When n = 6, there
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is a D(K∗
n,n,

−→
C 2n, 1) design as we found a D(Kn,n, C2n, 1) design2 with the aid of a

computer. Thus there is a D(K∗
n,n,

−→
C 2n, 1) design for every n ≥ 2.

This completes the proof of Theorem 1.1.

3 Open problems

The existence problem ofD(K∗
n,n,

−→
C 2n, 1) designs was solved in this paper. ForD(G,H, λ)

designs in which G is Kn, Kn,n, K
∗
n or K∗

n,n, and H is a Hamilton cycle or a Hamilton
path, the remaining problems are whether the following designs exist:
1. D(Kn, Cn, 1) designs for odd n,
2. D(Kn, Pn, 1) designs for n with n ≡ 2 (mod 4),
3. D(Kn,n, C2n, 1) designs for n with n ≡ 2 (mod 4),
4. D(Kn,n, P2n, λ) designs for n and λ,

5. D(K∗
n,
−→
C n, 1) designs for odd n,

6. D(K∗
n,
−→
P n, 1) designs for n with n ≡ 2 (mod 4),

7. D(K∗
n,n,

−→
P 2n, λ) designs for n and λ.

If the designs 1 exist, then the designs 2, 3 and 5 exist3 and if the designs 2
exist, then the designs 6 exist. In this sense, a D(Kn, Cn, 1) design, i.e., a solution of
Dudeney’s round table problem, would be important among them.
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